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ABSTRACT 4

This paper first generalizes a characterization of polyhedral sets

having least elements, which is obtained by Cottle and Veinott [6], to the

situation which Euclidean space is partially ordered by some general cone

ordering (rather than the usual ordering). We then use this generalization

to establish the following characterization of the class 
~ 

of matrices

(C arises as a generalization of the class of Z—inatrices, see [4], [13],

[141) : M ~ C if and only if for every vector q for which the linear corn-

plementarity problem (q,M) is feasible, the problem (q,M) has a solution

which is the least element of the feasible set of (q,M) with respect to a

cone ordering induced by some simplicial cone. This latter result generalizes

the characterizations of K- and Z-matrices obtained by Cottle and Veinott

(6] and Tamir [211 respectively.
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EXPLANATION

The linear complementarity problem is nowadays an extremely important

subject in mathematical programming. Its wide applications can be found in

such diverse areas as optimization , economics, structural engineering, finance,

f ree boundary value problems and optimal stopping . The area of large—scale

linear complementarity problems has in recent years received an increasing

amount of interest because of its potential usefulness in solving discretized

partial differential equations. A fundamental problem arising here is the

solution of these large—scale problems . Many of the currently available linear

complementarity algorithms are either not applicable or not suitable to solve

large—scale problems because of limited computer storage and expenses.

• Recently, Professor Mangasarian has proposed solving a class of large-scale

linear complementarity problems as linear programs . The purpose of this paper

is to provide a characterization of this class of problems in terms of some

• geometric notions in Euclidean space.
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ON CON E ORDERINGS AND THE LINEA R
COMPLEMENTARITY PROBLEM

Jong-Shi Pang

1. INTRODUCTION

Recently, there are a number of papers in the literature which are concerned with

characterizing polyhedral sets having least elements (61 , with characterizing certain

classes of matrices in terms of linear complementarity problems having least—element solu-

tions (6], [16], [21), and with solving linear complementarity problems as linear programs

• (4], (5), [13], 114), [15] , [18]. In fact, these three subjects are very closely related

to each other. Among those papers mentioned above, the first one (6) seems to be the prime

motivation for investigating the various relationships between the three theories. The

essential result obtained in that paper is a theorem which characterizes polyhedral sets

having least elements with respect to the usua) ordering of Euclidean space. As an ap-

plication of this characterization , the authors of the paper derived a characterization of

the class of K—matrices in terms of linear complementarity problems having least-element

solutions. It thus follows that linear complementarity problems with K—matrices can be

*
solved as linear programs . The characterization of K—matrices was later extended to Z-

matrices by Tamir [21). Therefore, linear complementarity problems with Z—matrices can

also be solved as linear programs.

Am application exploiting the fact that linear complomentarity problems with Z—

matrices have least—element solutions has been deocribed in [16). See also (17). In (16),

the author studied a class of large—scale linear complementarity problems arising from

quadratic programs with upper and lower bounds on the variables and with no other con-

straints. These quadratic programs have many applications in various areas. See (3).

We [16) presented a fast and efficient algorithm for this class of linear complementarity

* See (4) for a more precise description of this concept. Throughout the paper, the
phrase “solving linear complementarity problems as linear programs” has the meaning as
described in (4), 113), 1141 .

Sponsored by the United States Army under Contract No. DMG29-75-C-0024 and the National
• Science Foundation under Grant No. MCS75-l7385.
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problems which makes use of an efficient algorithm (2) to find the least—element solution

of a linear complementarity problem with a Z-matrix .

Mangasarian, in two recent papers [13), [14), introduced cer tain new classes of

matrices for which he showed that the corresponding linear complementarity problems can be

solved as linear programs. His method of derivation has nothing to do with least elements.

In (14], R. W . Cottle and the author summarized the results in Mangasarian’s two papers by

showing that all the classes of matrices studied in the paper — that are seemingly quite dif-

ferent — are in fact , subclasses of a large class of matrices , which we have denoted by C -

(Incidentally, C includes the classes of Z- and K-matrices.) Moreover , we have shown that

Mangasarian ’s results can indeed be derived via Cattle and Veinott’s theory of polyhedral

• 
•.~~ sets having least elements , thereby tightening up the connection between this latter theory

and that of solving linear complementarity problems as linear programs.

I t  is natural to ask whether matrices in C can in fact be characterized in terms of

linear complementarity problems having least-element solutions . That this might be pos-

sible is suggested by the fact that it is possible for the classes of Z- and K—matrices.

• Our purpose in this  paper i s  to provide a positive answer to this question . We would like

to ment ion that a generalization of 1~ has been studied in [5) (least—element aspect) and it:

(15) (non—least—element aspect). Moreover , it has been show n 118] that. ‘~ is closely re-

lated to t he  we l l -known  class ~~
‘ of m a t r i c e s  whose c ha i ac t e r ir a t i on  has long been an open

problem in the theory of the linear complemontarity problem but has recently been establ ished

in (18 ] .

In order to characterize C , we need to consider Euclidean space as being partially

ordered by some general partial orderings (rather than just the usual ordering that is

always implicitly implied in all the known characterizations). These partial orderings

arc induced by pointed cones and are thus called cone orderings. They certainly include

the usual ordering as a special case. We shall develop a theory of polyhedral sets having

elements that are least with respect to these cone orderings. The theory is an extension

of that obtained in (6). The key characterization theorem is described in terms of a gen-

eralized Leontief property presented in Saigal [19] and will be used to characterize C in

the manner described in the last paragraph . As in ( ( ) ,  we do not address the question of

the existence of the least elements. Instead , we refer the interested reader to (171

—2—
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The plan of this paper is the following. The next section is a summary of back-

ground materials. It contains two parts. In the first part, we review some basic defini-

tions and fix our notations. In the second part, we state some known results that are im-

portant to the development of our theory. In the third section, we consider R~ as being

partially ordered by some cone ordering and develop a theory of polyhedral sets having

least elements. We include a theorem characterizing a (strictly) isotone linear function

on under a cone ordering. This theorem is believed to be new and is related to the

problem of finding the least element, provided that it exists. ln the fourth and last

section, we establish the promised characterization of C -



2. BACKGROUND

2.1. Basic Definitions and Notations. Throughout this paper , R~ will denote the non—

negative orthant of Euclidean n-space R
n
, and R

n
~~ wil l  denote the class of real n x  £

matrices. We denote the i-tb column (row) of a matrix A c Rfl
~
<
~ by A . (A .,). By e’

we denote the i-th unit vector, i.e. the vector whose components are all zero except the

i—th component which is one. If S c R’~, we denote the interior of S by int (S) -

For a given vector q E Rn and matrix M ~ R~
<n
, we denote the linear complementarity

nproblem of finding a vector x E R
+ satisfying

Tq + M x > O  and x ( q + M x ) = O

by the pair (q,M) . Note that the nonnegativity of the vectors x and (q + Mx) are

meant componentwise. By the feasible sot for the problem (q,M), we mean the polyhedral

set

X(q,M) = {x c R~~: q + Mx > O)

The problem (q,M) is said to be feasible if X(q,M) ~

A matrix H R’~~
” is said to he a Z-rnatrix if it has nonpositive off—diagonal

entries. The Z—matrix M c ~~~~ is said to be a K-matrix if there is a vector x c

such that Mx > o (componentwiso).  Properties of these two c lass~ s of ma tr ices ha ve beeti

survoyed in (8). Let A c RnXt . It is said to be Leontief if it  has at most one positive

element in each column and there is a vOctor x ~ R~ such that Ax > 0 (compon entwise) .

If A is Leontief , then the system

Ax~~~b > O , x > O

is called a Leontief substitution system. Properties and applications of Leontief

matrices and of the associated Leontief substitution systems are well recognized in the

literature. See (7), (22]. It is clear that K—matrices are Leontief; and conversely,

square Leont ief matrices with positive diagonal elements are K-matrices. For A c

with ful l  row rank , we say an nXn  submatrix B is a basis if it is nonsingular.

A partial ordering ~ (see (11) on a set S is a binary relation on 5, which

satisf ies for all x ,y and z S, the following three axioms:

(P 1) x ~ x ( re f lex iv i ty) ;

4..



(P2) x 
~ 
y and y ~ z imply x ~ z (transitivity);

(P3) x ~ y and y < x imply x = y (anti symmetry)

The set S is said to be par t ia l ly  ordered (by ~ ) or a poset if ~ is a partial ordering

on S - We denote the poset S together with the partial  ordering ~ by the pair (S, ~

It is clear that every subset of a poset is a poset with the induced ordering . If x and

y are elements in a poset S, x .
~ y and x ~# y , then we write x .<  y

Example. The usual ordering < of R
n 

is defined as follows : For x ,y € Rn , x < y if

and only if x . 
•
~~ ~~~~ 

for every i . It is trivial  to show that this is a partial ordering .

Later in this section, the usual ordering of Rn will be generalized. For this particular

ordering, we write x < y to mean x1 < y. for every i . This is not to be confused

with < which is used for other orderings and has a weaker meaning.

*
Let T be a subset of the poset (S , 

~~ ) . An element t e T is a least element
*

of T (with respect to or under ~ ) if t ~ t for every t c T - The least element of

a pose t, if it exists, must be unique . This follows immediately from its defini tion and

the antisymmetry of the partial ordering.

Let CS , ‘~ ) and (5’, .~ ‘)  be posets . A mapp ing f :  S~~ S. is said to be isotone
- 

• if x ,y c S and x < y imply f(x) ~~~‘ f(y) . An isotone mapping is strict if x.< y

impl ies f Cx) -<‘ f(y) . When S’ is the real line and ~ is the usual ordering < of

scalars, we say that f is a (strictly) isotone real-valued function if the mapping

f: CS , ~ ) CR , <) is (strictly) isotone.

We review a few concepts about cones in Euclidean space [20] . A subset C of R
n

is called a cone if it satisfies the following three conditions :

(Cl) O e C ;

(C2) Ax c C for every A R+ 
and x E C;

CC3) x + y c C for x,y c C -

The cone C is said to be pointed if x € C and -x E C imply x = 0. It is finitely

generated if there exists G c such that C = fx c R~~: x = Gy for some y s R }

I n th is case , we denote C by pos(G) . A cone C is po~yhedra l if there exists F c

such that C {x c R~ : ~x > 
o} . A cone C is simplicial if C pos (X)

for some x c and X is nonsingular.
—5—
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Note that conditions (C2) and (C3) together imply that cones are convex. It is well—

known (see (20)) that a cone is finitely generated if and only if it is polyhedral. For

an arbi trary subset S c R
n
, we define its polar cone

* T
S = {y c R : X y > 0 for every x C s}.

*
Obviously, S is a nonempty closed cone . The next proposition can easily be proved (see

(20)). It gives an explicit formula for the polar cone of a f i n i t e ly  generated cone .

Proposition 2.1.  Let C c R~~
m 

. The n

• p05(G) = {x C R~~: X
T
G o) -

nXm
The following observation is important . Namely, i f  the mat r i x C £ R h:s l inear ly

independent columns , then the cone p os(C) is pointed and i ts polar cone pos(G) must  have

a n050npty in te r io r. This  l a t t e r  proper ty  is an immediate consequence of a standaid

a l te rn at i ve theor em on the solvability of a homogeneous system of linear equations. See

[20)  e .g .  I n p a r t i c u l a r , a simp li c i al  cone is poi n ted an d it ~ pol ar cone has a nonempty

interior.

We now return to orderings. The usual ordering < of Rn is d e f i ne d  “ component—

wise’ and determines a “cone of nonnegativity” ~ {x Rn : 0 < x) which , i n t h i s  case ,

is precisly the nonnegative orthant R~ . This ordering is generalized in the following

manner. (See Kransnosolski [12).) Let C be an a r b i t r a ry  pointed cone in R
n 

. The

cone ordering (induced by the pointed cone C ) is defined as follows : for x ,yC R
n

x y if and Only if y — x c C . It can readily be verified that this is a partial

ordering. Indeed , axiom (P1) follows from ( C l ) ,  (P2)  from (C3) and (P3) from the point-

edness of C . Under this cone ordering 
~~~~~ 

C becomes the cone of nonnegativity , i.e.

c = {x c R~ : 0 x}  . It is clear that the cone ordering induced by the nonnegative

orthant is precisely the usual ordering . If C is the polyhedral cone {x c R
n: Fx > 0}

where F C ~~~~ and the col umns of F are l i n early independen t ( in fact, the linear in-

dependence is equivalent to the poin tedness of C ) ,  then the cone ordering can be

viewed as a replica of the usual ordering as applied to a transformed image of - In—

deed , consider the linear transformation L: Rn -~ R
m de ined by L(x) = Fx • Then the

-6-
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•

ordering 
~~ 

is precisely the “inverse image” of the usual ordering on the image space

in other words, x y if and only if L (x ) < L (y )

The idea of incorporating cone orderings in the study of complementarity problems

is no new subject at all. In fact , the generalized complementarity problem which was in-

troduced by Habetler and Price (9) and later refined by Karamardian (10] is defined by

means of a cone ordering. We shall not discuss this latter problem further but refer the

interested reader to the paper (10].
4 1 4

2.2. Known Results. In this subsection, we review some known results that are of

~ fundamental importance in this paper. In each of the four theorems stated below , the word

“least” is mean t “lea st under the usua l orderin g”, i.e. “least componentwise ” . The f i r st

theorem cha racterizes polyhedral sets having least elements.

Theorem 2.2. (Cottle and Veinott [6)) Let A c R
iXn and X

b 
= (X C Rn : Ax ~ b} for

b s Ri - The following are equivalent :

(2.la) X.~, has a least element for each b such that is nonetnpty.

• (2.lb) There is a basis B in AT for which B 1
c > 0 for some c > 0 and each such

basis has a nonnegative inverse (entrywise).

It was noted in [6] that IL
0 

is nonempty for all b if and only if there is an x

such that Ax > 0 - Applying Theorem 2.2 to the linear complementarity problem (g,M)

we obtain the following characterization of K-matrices.

Theorem 2.3. (Cottle and Veinott (6)) Let M e Rt
~~ . The following are equivalent :

(2.2a ) H is a K—matrix.

(2.2b) For each q c R~, X (q , M ) has a least element x and x is the uni que element

in X(q,M) satisfying x 
T~q + Mx) = 0 -

A similar characterization of Z-matrices is given by

Theorem 2.4. (Tamir [21) ) Let H c ~~~~ - The following are equivalent:

C2. 3a) H is a Z—matrix.

(2.3b) For each 

•

q € R~ such
_

that X(q, M) ~‘ , X (q, M) has a least element x and

x satisfies x (q + Mx) = 0

-7-
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The phrase “linear comp]einontarity problems having least-element solutions” used in

the introduction, originates from these last two theorems. it is an abbreviation

for “linear compleincntarity problems which have solutions that can be characterized as the

least elements of the feasible sets of the problems.”

The class C of matrices consists of those real n X n  matrices H wh ich , together

with Z-matrices X and Y, satisfy the following two conditions:

(Ml ) M X Y

(M2) rTx + 5T~ > 0 for some r,s c
+

F Proposition 2.5.  (Cottle and Pan g 1 4) )  Let M C . Let X and Y be Z—mati-jces

sa t i s fy ing  conditions (Ml ) and (M2) - Then

( 2 . 4 a )  X is nonsingular

(2.4b) (XT, ~T ) is a Leontief matrix.

— V

Theorem 2 .6 .  (Cottle and Pang ( 4 ) )  l e t  M , X and Y sa t isf y the assumptions in Propo-

s i t ion 2 .5 .  Suppore that  the linear compi.ementarity problem ~~~~~~ is feasible. Then

• the polyhedral set

(2.5) V = ( v c R ’
~: X v > 0 , q + Y v > o )

• q — —

has a least element V . Furthermore the  vector x = Xv solves the problem (q,M) and

x can be obtzuined by solving the l inear  program

(2.6) minimize ~~~ subject to x € X ( q , M)

where p satisfies ~~~ > 0

•p -8—
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3. POLYHEDRAL SETS HAVING LEAST ELEMENTS

From now on, we consider R
n as being par t i a l ly  ordered by some general partial

ordering. We first state a proposition which shows how the least element of a set S c

can be obtained , provided that it exists. The proof of the proposition is straightforward

and thus omitted.

~~~ppsition 3.1. Let ~ be a partial ordering on Rn 
• Let x be the least element of

a set S c (Re, ~ ) .  Then x is a solution to the minimization problem

(3.1) minimize f(x) subject to x € S

for every isotone real-valued function f defined on S . Fu: ~he rmore , x is the unique

solution if f is strictly isotone.

• The significance of the proposition is that it suggests a con~tructive (though

sometimes not too effective) approach to find the least element whenever i t  exists.  If i t

happens that S is a polyhedral  set in Rn , and if f is chosen to be linear , then

problem (3.1) reduces to a linear program which of course , can be solved by the simplex

• method of linear programming.

In what follows, we present a representation theorem for linear (strictly) isotone

real—valued function defined on (Rn, ~~) where C is some finitely generated pointed

cone.

Theorem 3.2. Let G € R
flX m have linearly independent columns and let C = p05 (G) -

Consider the poset (Rn , 
~~ ~

) . A linear function f: R
n 

+ R is (s t r ic t ly)  isotone if

and only if there exists a vector p € ( m t  C ) C such that f(x) = p x for every

nx € R

Proof: We prove only the case of strict isotonicity . Proposition 2.1 implies that

* n Tm t  C = {x € R : X G > 0) -

If f(x) = ~~~ for some p c m t  C and for every x € R
F
, then

X 
C
Y Y G  for sone r c R ~~\ (O)

f(y) — f(x) = 
T

1 — x) (P
TG)r > 0 .

—9-
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Thus,

x y ~ f (x) < f ( y )

Hence f is s t r ic t ly  isotone . Conversely, suppose that f is strictly isotone . The

linearity of f implies the existence of a vector p € R~ such that f(x) = pTx for

every x e Rn 
. I~ remains to verify pe m t  C* . Let r C R \ to) . Then 0 Gr

because G has linearly independent columns. The strict isotonicity of f therefore

implies that f(Gr) = (p
T
G)r > 0 . In other words , we have proved the implication

r c R~ \ t o) (p
TG)r > 0

- T *which is clearly equivalent to p C > 0 . Therefore p c m t  C . This completes the

proof of the theorem.

Combining Theorem 3.2 with Proposition 3.1, we obtain

Corollary 3.3. Let C he given in Theorem 3.2. Let x be the least element of S C

(R
n
, ~~) • Then x is a solution to the minimination problem

minimize ~~~ subject to x c S

* *for every p c C . Furthermore , i L is the unique solution if p c m t  C

Remark . In both Theorem 3 . 2  and C o ro l l ar \ ’  3 .3 , t he  cone C is net r equ i r ed  to ~

• simplicial.

The conclusion in Theorem 2.6 about how the vector x can be obtained is an im-

mediate consequence of Corollary 3.3 because as we shall see later , x is indeed the

least element of the feasible set X(q,M) under the cone order 
~ pos (X)

In order to characterize polyhedral sets having leant elements with respect to cone

orderings, we introduce the following two definitions.

Definition 3.4. (Saiga) [19]) Let C be a convex set in R~ with m t  C ~ . Let

• A € R
flX 

~ with full row rank . We say that A has the generalized Leontief property

with respect to C if the followi ng two conditions are satisfied :

(3.2a) there is a basis B of A such that ~ c pos (B)

• 

- 
(3.2b) for each basin B of A such that m t  C a pos (B) 

~ 
, we have C c pos(B)
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We define L(C) to be the set of all matrices which have the generalized Leontief proper—

ty with respect to C

Definition 3.5. (Saigal (19)) We say that a matrix A € L(C) is hidden Leontief if

there is a nonsingular matrix D such that DA is Leontief and C c pos(D
1
)

Motivation to study the generalized Leontief property and hidden Leontief matrices

is due to the fact that “there are constraint sets (x € R~: Ax = bi that do not appear

to be Leontief substitution systems but can be shown to be equivalent to such systems”.

Various characterizations of hi&len Leontief matrices have been obtained by Saigal (19).

See also [11]. An application which exploits hidden Leontief properties is given in [lii.

If A is hidden Leontief, then the system

A x = b , x > O

is called a hidden Leontief substitution system.

Theorem 3.6. Let C be a simplicial cone in R
n . Consider (pfl

, 
~~~~~~ 

. Let

A ‘ Cr ,~i = {x R°~ Ax > b} for b € - Then the following are equiv—

a1 , rI

(1.3a) X has a least element for each b such that X
b ~

T *
( 3 .  o A • L(C

} i s f  For each b r R~ , let

R
n: AXy > b)

whe~~ C po-.(X) with X C RBXn  and nonsingular.  It is clear that X
b 

is nonempty

•f aid only if 
~b 

is so; and x is the least element of X.0 
with respect to 

~ 
if

*nd only if ~ 
~-l; is the least element of with respect to the usual ordering.

Hence , (3.3a) is equivalent to

(3.4) for each b such that 
~b ~ •~ ~b 

has a least element with respect to the usual

ordering.

According to Theorem 2.2, (3.4) is equivalent to

(3 .5) there is a basis B’ in (143()
T 

for which (B’)
1c > 0 for some c > 0 and each

• such basis B’ has a nonnegative inverse.

—11—

Lu 
_ _ _  _



Every basis B’ of (AX)
T has the form B ’ = (BX)

T where BT is a basis of AT

The converse is also true , i.e. , if 8
T 

is a basis of A
T
, then B’ = (BX)T is a basis

of (AX)
T 

. Thcretore, (3.5) is equivalent to

• (3.6) there is a basis B
T 

of A
T for which (B

T
d)
T
X > 0 for some d > 0 and each

P such basis B
T 

satisfies Ic > 0 ~ (BX)
T c > 0] -

Noting that

(Bx) Tc > o x~~
’c = BTd for some d C R~

* —T
~ and that C pos(X ) ,  we conclude r eadily tha t • (3.6) is indeed equivalent to (3.3b).

-, This completes the proof of the theorem.

Theorem 3.6 character izes polyhedral sets having least elements with respect to

partial orderings induced by simplicial cones. It ç, ’ncralizes Theorem 2.2. It should

be pointed out t h a t  the r e q u i r e m e n t  t h a t  the cone C be s implic ia)  is essent ia l  in order

• •
• for the one—to-one  correspondn~~— r he tw , n e l e m en t e  i n  Xb and 

~b 
and also for the

• 
• re lation shi p b e tw ,~~ basin of (AX)

T and of AT to he valid. If C is merely finitely

generated m.d po n L ~ a , we h Ove the f ol ) ow i nq  re~;u1t .

• ~~~ posi t ion 3 .7 .  Let G C R
T I X m  have l inea r ly  independent columns anJ C = pos (G) .

iXn T *
Consider (R n , ~~~) . LeL A t R . If A C L(C ) and is h idden  Leon t ief , then

(3 .3a )  ho ld s .

Proof: According to a property of hidden Leont ief  matr ices  [19) , there exists a simp]icial

n T * * *
cone S = {x c R Dx > o} such that A € L(S) and C C S . Since S = (S ) (see

S *( 2 0 ] ) ,  i t  fo l lows  f r o m  Theorem 3 .6 th at (3 .3 a )  holds w i t h  respect to S . Therefore ,
* * *(3 .3a) mus t  hold w i t h  respect to C because S C (C ) C . This completes the proof

of the proposition .

—12—

_ _ _ _ _ _ _ _  •



:-~~r’~ ~

• 4. CHARACTERIZATION OF C

In this section, we use the results developed in the last section to establish a

characterization of C in terms of linear complementarity problems having least—element

solutions. Before proving the main theorem, we state and prove the following proposition

• • which describes a relationship between matrices in C and hidden Leontief matrices. The

proposition generalizes the fact that if M is a Z—matrix, then the matrix (I, M
T
) is

Leontief.

n X n  *
Proposition 4. 1. Let M € R a C . Then there exists a simplicial cone C such

T *
• that the matrix A = (I, M ) € L(C ) and is hidden Leontief.

Proof: Let X and Y be Z—matrices satisfying conditions (M l) and (M 2) . Observe

that (H2) can be written as •

T T fl
- i (r + s M)X > 0 for some r,s c R

+

* -TLet C p05(x) . Then C = pos (X ) is simplicial. According to Theorem 2.6,

for every vector q such that X(q,r4) ~ 4 ,  the polyhedral set V

defined by (2.5) has a least element v with respect to the usual ordering . As mentioned

in Theorem 3.6 , v is the least element of V
q 

with respect to the usual ordering if and

only if x = Xv is the least element of X (q,M) with respect to the cone ordering 
~

T • 
* TTherefore by Theorem 3.6, we conclude that A € L(C ) - It remains to ver i fy  that A

is hidden Leontief. Noting that (XT, ~
T
) = X

T
A
T 

and letting D = xT , we deduce , by

T * -l
(2.4b), that DR is Leontief. Finally, it is clear that C = pos(D ) . This completes

the proof of the proposition.

5 
Remark: The matrix A

T 
(I,M

T
) arises in the linear programming formulation of the

linear complementarity problem (q,M) with M cC Indeed, the dual of the linear pro-

gram (2.6) is given by :

minimize qTy subject to p — M
T
Y > o , y o

or equivalently,

minimize (~) ç subject tO A”e’) (
V) > 0

—13—

I ~~~~~~~ •~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~~~~~ 5-~~~~~~~~~~~~~~~~~~~~~~~~~~ 1- - • S -5 _ _ _



Combining Proposition 4.1 and Theorem 2.6 , we conclude that if N €
~~~~ 

and if the linear comple—
• . mentarity problem (q,M) is feasible, then (q,M) has a solution which can be obtained

by solving a linear program whose dual has a constraint set defined by a hidden Leontief

substitution system.

• 0 Theorem 4.2. Let M c RnXn - The following are equivalent :

(4.la) M c C  -

(4.lb) There exists a siinplicial cone C, such that for each q e R
n 

for which

X(q,M) ~ ~, X ( q , M) has a least element x with respect to 
~

and x sa t i s f ies ~ 
T (q + Mx) 0 .

Proof : (4.la) -
~ (4 . lb ) . This follows immediately from Theorem 2.6 and the proof of

• Proposition 4.1.
•

5

• 0~~ ( 4 . lh )  ~~ ( 4 .l a )  . Let C = p05(x)  where x c rJiXn is nonsingular but not neces—

saril y a Z-matrix .  Let Y = . According to the assumption , we deduce that  for every

• Vector q for which the set V
q 

(defined by ( 2 . 5 ) )  is nonempty, it has a least element
• 

— -l_ 
— — T  —v(= X x) with respect to the usual  order ing and v sa t isf ies  (Xv) (q + Yv) 0

k k k — 1 k• Let k be an index in {l , . . . ,n)  . Choose q = e — Va where a = IC e - Then

a
k 

c V . Theref ore V contains an element < a
k 

. Moreover, ~ 5k Defineq q —
• • k k — k  k . Sv = a — v , then v is a non—vanish ing  Vector. For i ~ k, we have

• (4.2a) x.~~
k 

= x. (X lek) - x.~~~ < ~

and

k k —k(4.2b) Y . v = Y . a - V . v1. i’ 1.

= q .  - v k
1 i• —

Now if we define the matrix W (v1,. .. ,vn) where are the vectors defined above ,

then clearly, x’ = XW and V’ = YW are Z—matrices by (4.2). Moreover MX’ = Y’ . It

remains to ver ify  that there 

T 

and s in such that r
’15
X’ + STy, > 0

By Theorem 3.6, it follows that A = (I , N ) c L(C ) . Therefore , there exists a basis
T T * *• B of A such that C c pos(B ) . This Implies, by the fact that m t  C 

~

(tT B)x > 0 for some t C R~

—14— 
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If we define the vectors r (r
i
) and 5 = (s.)

• rtj if e~ = (B
T

) . for some j

r~~=~
• otherwise

if (MT)~~ (B
’1
~). for sane

0 otherwise,

then clearly r , s c R~ and

r
Tx + 5T~ = (rT + sTM)x = tTB x  > 0

Finally, we have

r
T
x~ + 

T~ , = (rTX + Ty)W > 0

because each colunm of W is non—vanishing and W > 0 . This shows that  H c C and

completes the proof of the theorem.

The above theorem generalizes both Theorems 2.3 and 2.4. It should be emphasized

that in (4.lb) , the cone C is not required to be induced by a Z—matrix. Moreover, it is

worth pointing out that there exist matrices M € C which satisfy the defining conditions

(Ml) and (112) for some matrices X and V which are not both Z-matrices. An example is

given by the following.

Example. Consider M = c~ 
2
) - Let X = ( ~ ~~ and Y = ( ~~ 1) - Clearly0 1 /2 1 /2 — l

MX = V and (M2) is satisfied because IC is a K—matrix. H C because

3 2 ~1_ l  
— 

3 — l

~~ — 1~ 0 l~ 
— 

~o —i~

Observe that V is not a Z-matrix.
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